Mechanism of tripartite RNA genome packaging in Rift Valley fever virus.

نویسندگان

  • Kaori Terasaki
  • Shin Murakami
  • Kumari G Lokugamage
  • Shinji Makino
چکیده

The Bunyaviridae family includes pathogens of medical and veterinary importance. Rift Valley fever virus (RVFV), a member in the Phlebovirus genus of the family Bunyaviridae, is endemic to sub-Saharan Africa and causes a mosquito-borne disease in ruminants and humans. Viruses in the family Bunyaviridae carry a tripartite, single-stranded, negative-sense RNA genome composed of L, M, and S RNAs. Little is known about how the three genomic RNA segments are copackaged to generate infectious bunyaviruses. We explored the mechanism that governs the copackaging of the three genomic RNAs into RVFV particles. The expression of viral structural proteins along with replicating S and M RNAs resulted in the copackaging of both RNAs into RVFV-like particles, while replacing M RNA with M1 RNA, lacking a part of the M RNA 5' UTR, abrogated the RNA copackaging. L RNA was efficiently packaged into virus particles released from cells supporting the replication of L, M, and S RNAs, and replacing M RNA with M1 RNA abolished the packaging of L RNA. Detailed analyses using various combinations of replicating viral RNAs suggest that M RNA alone or a coordinated function of M and S RNAs exerted efficient L RNA packaging either directly or indirectly. Collectively, these data are consistent with the possibility that specific intermolecular interactions among the three viral RNAs drive the copackaging of these RNAs to produce infectious RVFV.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

RNA Encapsidation and Packaging in the Phleboviruses

The Bunyaviridae represents the largest family of segmented RNA viruses, which infect a staggering diversity of plants, animals, and insects. Within the family Bunyaviridae, the Phlebovirus genus includes several important human and animal pathogens, including Rift Valley fever virus (RVFV), severe fever with thrombocytopenia syndrome virus (SFTSV), Uukuniemi virus (UUKV), and the sandfly fever...

متن کامل

Efficient Cellular Release of Rift Valley Fever Virus Requires Genomic RNA

The Rift Valley fever virus is responsible for periodic, explosive epizootics throughout sub-Saharan Africa. The development of therapeutics targeting this virus is difficult due to a limited understanding of the viral replicative cycle. Utilizing a virus-like particle system, we have established roles for each of the viral structural components in assembly, release, and virus infectivity. The ...

متن کامل

Mutational analysis of Rift Valley fever phlebovirus nucleocapsid protein indicates novel conserved, functional amino acids

Rift Valley fever phlebovirus (RVFV; Phenuiviridae, Phlebovirus) is an important mosquito-borne pathogen of both humans and ruminants. The RVFV genome is composed of tripartite, single stranded, negative or ambisense RNAs. The small (S) segment encodes both the nucleocapsid protein (N) and the non-structural protein (NSs). The N protein is responsible for the formation of the viral ribonucleopr...

متن کامل

Quantitative real-time PCR detection of Rift Valley fever virus and its application to evaluation of antiviral compounds.

The Rift Valley fever virus (RVFV), a member of the genus Phlebovirus (family Bunyaviridae) is an enveloped negative-strand RNA virus with a tripartite genome. Until 2000, RVFV circulation was limited to the African continent, but the recent deadly outbreak in the Arabian Peninsula dramatically illustrated the need for rapid diagnostic methods, effective treatments, and prophylaxis. A method fo...

متن کامل

Single-Molecule FISH Reveals Non-selective Packaging of Rift Valley Fever Virus Genome Segments

The bunyavirus genome comprises a small (S), medium (M), and large (L) RNA segment of negative polarity. Although genome segmentation confers evolutionary advantages by enabling genome reassortment events with related viruses, genome segmentation also complicates genome replication and packaging. Accumulating evidence suggests that genomes of viruses with eight or more genome segments are incor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 108 2  شماره 

صفحات  -

تاریخ انتشار 2011